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Abstract: In the last ten yearsa paradigmshift took placein cognitive science.While during
the seventiesproblemswere commonly attackedby symbol processingapproachesin the last
decademanyresearcheresmployedconnectionistnodels. Thesemodelscanbe seenasdynamical
systemson metric spaces.Thereis not yet a developedheory of the behaviorof thesesystems,
but they seemto be a challengefor future research.The purposeof this paperis to introduce
the problem and the dynamic approachto it.

1 Cognitive Processes

The subjectof cognitivesciences the descriptionandsimulationof cognitiveprocesses
and structures,especiallyin the areasof memory, problem solving, verbal behavior,
and image identification.

Some cognitive processesfor examplethe productionand the parsingof sentences,
seemto employ sophisticatedymbolmanipulatingoperationsptherprocessessuchas
imageidentificationor accesgo word meaning,seemto rely on fastprocessingf huge
amountsof rathervagueknowledgethat hasbeenlearnedin many different situations.
This learningis performedin a smoothway, enablinggeneralizationcontextsensitivity
and noisy inputs. This useof experiencemakesit necessaryo comparesituations,i.
e. to decideif a new situationis equalto or resemblesan old one. This comparison
might be achievedby useof distancemeasuresvhich aresensitiveto many parameters
of the situation. Distancesbetweensymbolic objectsare ratherartificial constructions,
while they are elementaryto elementsof metric spaces.

Another controversyin cognitive science,which is closely relatedto the questionof
symbolic processingjs the question,to what degreethe cognitive systemis modular
([8]).- A modularview assumeghat the cognitive apparatusconsistsof independent
modulesbetweenwhich dataare exchanged.This assumptiorseemsto be the natural
consequencef a symbol processingapproach. On the other hand, it seemsdifficult
to explain the high speedof perceptionprocessesvith modular symbol processing
systemsbasedon rather slow biological neurons. There are also empirical datathat
seemto contradicta strictly modularapproach.

1 This researchwas supportedby the Heinz-Nixdorf-Institutand by the DeutscheForschungsgemein-
schaft(DFG) Kennwort: Worterkennungssimulation

2 E-mail: ferber@psycho2.uni-paderborn.de



To explaintheseaspectsmodelswith distributedmemoryand parallel processesave
beenproposedthat can be interpretedas dynamicalsystemson metric spaces.These
models are known under many names, such as connectionism,parallel distributed
processing(pdp), neural networks ([10], [12], [1], [7], [9], [13]), and are definedin

many differentways. In the following paragraptsomeformal definitionswill be given

that catchthe centralaspectf thesemodelsto unify terminology (Seealso [3]).

2 Neural Networks

The following very generaldefinition includesmost of the deterministicmodelsused
in literature. Besidethese,thereare non-deterministicor probabilisticmodels.

2.1. Cédlular Structure
Let W be a setand/ a countableset. ¢ : I — W is called a configurationof
valuesof W onthecellsof 7. ¢ = W! = {¢: I — W} denoteshe spaceof all
configurations.
Foreverycell : € I let N(:) C I beafinite, orderedsubsetthe neighbohood of
celli. ThesetN = {N(:)|: € I} of all neighborhoodslefinesa directedgraph
with nodeset 7 andthe setof edges{(:, ;) | j € N(z)}, the connectiongraph, net
structure or grid of the cellular structure.
For everycell i € I let f; : WY@ — W be a local function Let further
f={fi]e€ I} bethesetof all local functions. Then”Z = (I, W, N, f) is called
acellular structue. F: C — C with F(c)(z) := fi(¢(N(7))) is calledthe global
function of ~.
If I is finite, Z = (I,W, N, f) is calleda finite cellular structure.

If W is finite, Z = (I, W, N, f) is calleda cellular automaton
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Figure 1: Three Different grid structues. Neighborsare indicated by an
arrow from the neighborto the cell itself. a) Arbitrary grid, b) Rectangular
grid with VON NEUMANN neighbohood, ¢) One dimensionalcircular grid.

Theglobalfunctiondefinesanautonomouslynamicalsystenonthe configurationspace.
The behaviorof the systemcan be influencedby the structureof the grid and by the
natureof the local functions. Both kinds of restrictionsare usedto constructmodelsof

cognitive behavior. The following restrictionon the local functionsis usedfrequently:
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2.2. Neural Net
1. A cellular structureZ = (I, W, N, f) with W C R and
file(N(2))) = f,( Z wm‘c(j)) with w;; €R Q)
JEN (i)
and monotonic not decreasing functions &; : R — W is called a (deterministic)

neural net. ¢; is called the output function of cell :. w; ; is called the weight from
cell 5 to cdl «.

2. A function of the form

g : R" — {0,1}; og(x) = (g (Z wia‘,i> = { Loaof l; wiz; — 0 >0
1=1

0 otherwise
is called alinear threshold function with weights w1, ..., w, and threshold 4.

The dynamic behavior of a neural net on a given grid is determined by the output
functions and the weights. In many cases the same output function is chosen for all
cells. Then the behavior of the system depends only on the weights. They can be
chosen to achieve a desired behavior of the system. This can be done either in one
single step (see for examples [6], [4]) or in alonger adaptation process of small smooth
changes either before the use of the net as a model or even during the use of the system.
This construction of appropriate weights is often called learning.

The following restriction on the structure of the net forces a smple dynamical behavior:

2.3. Feed Forward Net

Let Z = (I,W, N, f) be a celular structure. The set Sy = {i € I | N(z) = 0} is
caled the set of input cells.

Let S, C I be the set of cells that can be reached from the cells of Sy by passing
through exactly n edges of the connection graph of Z. If Sy # 0 and dl S, are
digoint, the grid is called a feed forward grid and S,, # () are caled layers of the
grid. Sy is caled input layer, S, withn = maz{m € N | S,, # 0} is caled output
layer and all layers in between are called hidden layers. Z = (I, W, N, f) is caled
a feed forward net or a feed forward network.

Feed forward neural nets are used to transform an input pattern of values on the input
layer into a pattern of values on the output layer of the grid. A well known example with
three layers is the perceptron developed 1962 by F. ROSENBLATT [14] and extensively
studied by M. MINSKY and S. PAPERT in [11]. Other examples with more layers and
continuous output functions are back-propagation networks. The name is due to the
way in which the weights are computed: First the weights are set to random values;
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Figure 2. A feed forward grid with 5 layers

then, using a sample of given input and target patterns as training material, the pattern
on the output cells produced by the network from the input pattern is compared with the
target output. Using a gradient descend method, the weights are changed in such a way
that for this input pattern the difference between the output of the net and the target is
reduced. To adapt the weights between earlier layers, error values are propagated back
to these layers, and a correction for the weights is computed using these error values.
(For details compare [9].)

The dynamic of a feed forward net is quite smple: Starting with an arbitrary config-
uration ¢ € C, the values of the input cells in the first iterate F'(¢) depend only on
their local functions since they have no input (argument). From the second iteration on
the values of the cell in S, are constant, since they have only the constant input from
the cells of Sy. In this way the values of the subsequent layers become constant in
subsequent iterates. In a net with n layers the iteration sequence reaches the same fixed
point from every configuration within » + 1 iterations.

3 Example

In the following we shall concentrate on experiments investigating the process of word
recognition. One goal of these experiments is to answer the question of modularity
of the cognitive system,in this casethe question,if thereis anindependenmodule
functioningasa mental lexicon wherethe wordsknown by a personare stored.

First we shall give a brief descriptionof the experimentalsituationin which dataon
humanword recognitionare collected. Thenwe shall outline a simulationof suchdata
using a back-propagatiometwork. Finally a dynamicmodelis proposed.



3.1 Word Recognition and Priming

Word recognitionis an experimentalparadigmthat is usedfrequently to investigate
cognitive processesn verbal behavior. The basicideais to measurehe time people
needto respondo the presentatiorof awrittenword, the socalledtarget. Therequested
reactionsare eitherto namethe target (haming experiment), or to decide,if a presented
string of characterss a word of the native languageof the personor not, by pressing
an appropriatebutton (lexical decision experiment). In both casesthe time elapsing
betweenthe onsetof the presentationof the target and the onsetof the reactionis
measured.There are many studiesinvestigatingthe effect of

— frequencyof the target in language

— regularity of pronunciation

— length of the target

and the like.

Priming experimentgnvestigatethe effect of contexton namingand lexical decision.
In this casethe presentatiorf thetargetis precededy the brief presentatiorof another

word, the so called prime. This prime can be relatedto the target in different ways.
It can

be the sameword typed differently (uppervs. lower case)(identity priming).

— be semanticallyrelated(semantic or associative priming)

— precedethe tamget frequentlyin naturallanguage(syntactic priming)

— be similar as a string of characterqggraphemic priming)

If the presentatiorof a target thatis relatedto the precedingprime leadsto a quicker
reaction,thenthe mentallexicon is probablynot completelymodular.

The results show complex behavior (see[5], [16] for an overview and references).
While somestudiesfound someof the priming effects, othersdid not. Thereseemto
be many factorsinfluencingthe results. At leastit seemsto be ratherunlikely that a
mental lexicon existsthat is completelymodular.

3.2 A Back-propagation M odel

We shall now presenta model of word recognitionthat catchessomeof the features
of a parallel and distributedsystem.

3.2.1. The Model

In 1989 M. SEIDENBERGand J. McCLELLAND proposeda “Distributed, Developmental
Model of Word RecognitionandNaming”[15]. Theyuseda modifiedback-propagation
model and were able to simulate“many aspectsof humanperformancencluding (a)
differencesetweernwordsin termsof processindlifficulty, (b) pronunciationof novel
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items, (c) differencesbetweenreadersn termsof word recognitionskill, (d) transition
from beginningto skilled reading,and(e) differencesn performancen lexical decision
and naming tasks.”[15: page523].

The netthey used,consistedf 3 layers: an“orthographic”input layer Sy of 400 cells,
a hiddenlayer S; with 100to 200 cells, andan outputlayer S; thatwasdividedin two
parts: a “phonological output part with 460 cells and an orthographicpart that was
similar to the input layer. The phonologicalpart of the output was usedto simulate
namingdata,the orthographigartwasusedto simulatelexical decisiondata. Thelayers
were fully forward connectedj. e. for m € {1,2} and: € Sy, it holds N (z) = Sp,—1.

phonological
output
orthographic
input
orthographic
output

SO Sl

Figure 3: Structure of the back-propagation grid used by M. SEIDENBERG and J. McCLELLAND. It
can be seen as one grid from .5, to 5> or as two grids, one from the orthographic input to
the orthographic output and one from the orthographic input to the phonological output.

Themodelwasbuilt for monosyllabiovordsconsistingof morethan2 letterswhichwere
notforeignwords,abbreviation®r complexwordsthatwereformedfrom theadditionof
afinal —s or —ed inflection. The representatiof thesewordson the inputlayerand,as
targets,on the orthographicpart of the outputlayer was constructecby a complicated
transformationof the letter triplets occurringin the word. The representatiorof the
phonologicaltargets was a transformationof triplets of phonemesoccurring in the
pronunciationof the word. (For detailscompare[15] and[9 vol.2, chap.18])

To simulate the reactiontime the mean quadraticerror betweenthe output pattern
computedby the net on the respectivepart of the output layer and the target pattern
was used. The assumptionwas that a convegenceprocesstakesplace,in which an
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erroneouspatternconvegesto the correctone. This processshouldtake more time,
if the error is big.

The model was trained with 2,884 stimulus — target pairs, presentedrom about 14
timesfor low frequentwordsup to 230 timesfor the mostfrequentwords. With every
presentatiorthe weightswere changedfor the orthographicpart of the outputandthe
phonologicalpart of the output. Thus the weightsfrom the input to the hiddenlayer
were trainedtwice, for the orthographicto phonologicalnet and the orthographicto
orthographicnet.

3.2.2. Remarks

Severalremarkscan be madeon the model describedabove(3.2.1).

1.

The modelrealizesa “metric” system,sinceinput and outputare elementsof ann
dimensionakpace.lt canbe seermasa continuousmappingfrom R*%0 to R160 x R190,
This continuity is probablyoneof the reasondor the ability of the modelto exploit
regularitiesof the training materialand generalizehemto new material.

The effectivenessof the continuity in generalizatiordependon the representation
of the input. On the one handit hasto represenenoughof the crucial information
of the individual input to distinguishit from otherinputs, on the other handit has
to generalizeover the individual inputsto extractfeaturesthey havein common.
The representationasedin the modelare very sophisticatedhencea good deal of
its power may be due to the “constructed”representations.

As theauthorsmentionthe numberof cellsin thehiddenlayerhasa stronginfluence

ontheperformancef themodel. It determinediow muchinformationcanbepassed
throughthis layer,i. e. how detailedor generalizinghe treatmenif a singleinput

can be.

Thespecialstructureof thenetwith thehiddenlayerin commonfor theorthographic
to phonologicalnet and the orthographicto orthographicnet, can be a reasonfor
the model’'s generalizatiorbehaviorin the simulationof the lexical decisiontask.
The representatiorof the information on the hiddenlayer hasto take accountof
both the phonologicaland the orthographicpropertiesof a word.

The authorsstressthe point that their modelhasno lexicon. But the orthographic
to orthographicnetis a devicethat reproduces word from a string of letters. Due
to the continuity it is somewhatobustagainstsmall perturbation.It will produce
the correctoutputevenif only partial informationis givenasinput. Hencewith an
appropriatefunctional definition of a lexicon, it is just a distributedimplementation
of amentallexicon,including phoneticinfluencesasdescribedn thelastremark(4).
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6. Theauthorsview their modelaspartof alarger modelincluding layersfor meaning
and context. In the presentimplementationit is not visible how theseadditional
componentshouldbe integrated. Hencethe simulation of further processesuch
as priming is not possible.

7. Becauseof the feed forward structureof the net, thereis no possibility to explain
the influence of previousinputs or strongerinfluenceof a longerinput. To the
modelit makesno differenceif the input is presentednceor for a longertime.

4 A Dynamic Model of Word Recognition and Priming

The modeloutlinedin 3.2.1 simulatesreactiontimes by distancesetweenpatternsof
activitieson partsof a neuralnetandexpectedarget patterns.lt is assumedhat larger
distancesesultin longertimesfor the formationof correctpatternsasinput to the next
componentof the cognitive system.

In the remainingpart of the paperwe shall outline someideashow a simulationcould
work that usesthe convegenceof a dynamicalsystemon a metric spaceto simulate
word recognition processes.

4.1 Basic Assumptions

First some assumptionsare listed that point out the basic principles of the dynamic
model.

4.1.1. Cognition as Dynamical Process

The first assumptiorof the dynamicalmodelis, that cognitive processesire simulated
by a dynamicalsystemgiven by the global function of a neuralnetwork. The cognitive
statesarerepresentedby the corfigurations,the time courseof the processs simulated
by the iteration sequence.If the iteration sequenceapproaches small attractor,for
examplea fixed point, this either correspondgo a stablecognitive state,for example
the meaningof a word or image, or it is a constantor periodic input to other neural
nets stimulating further processes.In both casesthe assumptionis central, that only
configurationsequencethat havesomestability over (a shortperiodof) time cancause
somethingto happen.

4.1.2. Learning: Detecting Regularities in the Input

Thesecondbasicideais, thatthe neuralnetis slowly but constantlychangedy its input
in sucha way that co-occurringeventsare associatedi. e. the configurationgesulting
from frequentand frequently co-occurringeventsin the input of the systemshouldbe
stable. This enableghe netto “detect regularitiesin its input (compare7]). Fromthe
point of view of the dynamicalsystemthis meansthat by changingthe weightsof the
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neuralnet, the attractorsof the global function andtheir basinsof attractionhaveto be
changedn sucha way that frequentinput patternsbecomeattractors.

4.1.3. Constantly Triggering Input

In contrastto 3.2.1it is assumedthat the grid hasno pre-definedstructure,especially
no feed forward structure,but that the structuredevelopsduring learning. It should
be not very denselyconnectedand it should containloops. Input is presentedo the
net in sucha way that the input patternis addedto the activities of the input cells
for severalapplicationsof the global function; i. e. the systemis no longer an
autonomoussystem,but is triggeredby the externalinput. ¢,+1 = F(c, + ¢,) with

(cn +10)(7) == en(y) + tan(j). Theinput cells are only a small fraction of all cells of

the net. From this fraction the influenceof the input spreadsout to the other cells.

Thereit can matchwith the existing patterns(of the previousattractor)or it canforce
themto change moving the systemto the basinof a differentattractor. This constant
triggering allows on the one handto control the durationand strengthof the input, on

the other handinfluencesof previousinputs are preservedor a while to interactwith

new influences asit is necessaryo simulatepriming effects (compare3.2.2.7).

4.1.4. Subnets and Modularity

The distributedrepresentatiorof the processednformation as patternon the cells of

the grid allows complicatedinteractionsjncluding modularization.It is possiblethat a
subsef cellsis stronglyinterconnectedbut hasonly a few connectiongo othercells.

Sucha subsetor subnetcould be called a module. It is also possiblethat the system
convegesfor awhile relativelyindependentntwo suchsubnetsowardssub-patternsf

differentattractorsandthatlater on corflicts arisebetweenthesetwo sub-patternsFor

examplethere might be subnetsincorporating“meaning, and “context”, as proposed
by [15]. In sucha casethe configurationcoming from the (orthographic)input may
convege on one part of the net (say meaning)to one attractorbut on the other part
(context) it may convepge to anotherattractor, becausethe surroundinginformation
points toward a different interpretation. This may lead to a contradictionand finally

one of the two attractorswill win.

The idea of shapingattractionbasinsis very powerful. It openspossibilitiesfor the
explanatiorof manyeffectsin word recognition.On the otherhandit is notyetin such
a concretestatethat any one of theseexplanationscan be morethana hypothesis.

4.2 Simulation of Word Recognition Processes

In termsof this modelthe processesvolved in naming,lexical decisionand priming
can be describedin the following way:



4.2.1. Naming

For the naming task the systemhas to stimulate the pronunciationof the written

word. In a modular approachit is assumedthhat this is done by the production of

a phonologicalcode,which in turn is the basisfor the generatiorof a motor codethat

controlsarticulation. A comparablesystemis also possiblefor the dynamicalmodel,

as a cascadeof neuralnets, one stimulatingthe next one as soonas it hasreacheda

stablestate(seealso[2]). The dynamicmodel can explain severalother phenomena:
Frequentvordsare namedfaster,sincetheir attractorsare strong;regularly pronounced
words are namedfaster,sincethe sequencef lettersare more frequentand hencelead

to faster convegence.

4.2.2. Lexical decision

The lexical decisiontaskrequiresto distinguishbetweencharactestringsrepresenting
words and characterstringsthat do not representvords. In generalthe words usedfor
this purposeare well known, short, and frequentwords of the native languageof the
subject. The non—wordstringsare constructedn sucha way that they havethe same
length and that they are pronounceable From 4.1.2 it shouldfollow that thereis no
attractorfor thesestrings sincethey are new to the system,and thereis no meaning
associatedo them. Hencein thosepartsof the grid whose configurationsrepresent
meaningthereshouldbe no convegence. Of coursethere canbe convegencejust by
chance,but that is equivalentto a wrong answerof a person.

4.2.3. Priming

Priming effectsoccur,whenthe systemis movedby the influenceof the prime towards
the attractorof the target: Theinput of the prime changeghe configurationof the netin

suchaway that, if the following targetis relatedto the prime, the configurationwill be
alreadycloserto the attractorof the target, thanit hasbeenbeforethe prime influenced
the net. Hencethe attractoris reachedfasterthan without the prime.

4.2.3.1 ldentity priming. If the tamget is the sameword as the prime but written in
lower casdetters,while the prime waswritten in uppercaseletters,mostof the patterns
inducedby the two stringswill be the same.Hencethe impactof the prime on the net
will be very similar to that of the tamget.

4.2.3.2 Semantic priming. If the prime and the target are semanticallyrelated, they
appeamore frequentlytogether(see[18]). Hencethey canleadto the sameattractor
concerning“meaning and “context”: the influence of the prime movesthe system
closerto an attractorthatis in manyrespectsalso a possibleattractorfor the target.
4.2.3.3 Syntactic priming is basedon frequentco-occurrenceof wordsin language.
Accordingto 4.1.2this should lead to fasterconvegence.
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4.2.3.4 Graphemic priming is basedon the similarity of characterstrings,i. e. the
primeis a string of charactersn which only very few charactersarechangeccompared
to the tamget. If the strings are enteredby activating input cells that representshort
sequencegtuples)of charactersgostof thesetupleswill bethe samein the prime and
the target. Hencea weak form of identity priming will take place.

4.2.4. Priming with ambiguous words

Of specialinterestareexperimentaith ambiguoudargets,i. e. letter stringsthat have
severalmeanings.In generala semantigriming effect is observednly for the primary
meaningi. e. themorefrequentmeaning.If the prime hasa strongimpacttowardsthe
lessfrequentmeaning(secondarymeaning, for exampleif a whole sentencas usedto
prime thatmeaningthe reactionis alsofaster. A closeranalysisof the processe¢[17])
showsthat at first both meaningsare activatedaccordingto their frequency.While the
primary meaningquickly reachesa high availability, the availability of the secondary
meaninggrows slower. After about300 ms the secondarymeaningreachesearly the
sameavailability asthe primary meaning.Afterwardsits availability decreasesgain.

Thesedata could be explainedby a processlike that describedin 4.1.4. First there
is an relatively independentevolution of patternson different parts of the net, one
representinghe primary meaning,one representinghe secondarymeaning. After a
while the developingpatternsgrow so large that they get into a conflict in which the
patternof the primary meaningsuppressethat of the secondarymeaning.

Figure 4: Two ambiguoudfigures: Left the so called NeckerCube: Either
vertexa or vertexb can be seenas beingin front. The figure on the
right can either be seenas two black facesor as a white candlestick.

A similar processcould causethe well known switching effects for ambiguoudfigures
like thoseshownin figure4: Thetwo meaningsarerepresentetly neighboringattractors
of thedynamicalsystem.Theinfluenceof additionalinformationmovesthe systemfrom
the basin of one attractorto that of the other.
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