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Abstract: In the last ten yearsa paradigmshift took placein cognitive science.While during
the seventiesproblemswere commonlyattackedby symbol processingapproaches,in the last
decademanyresearchersemployedconnectionistmodels.Thesemodelscanbeseenasdynamical
systemson metric spaces.Thereis not yet a developedtheoryof the behaviorof thesesystems,
but they seemto be a challengefor future research.The purposeof this paperis to introduce
the problem and the dynamic approachto it.

1 Cognitive Processes

Thesubjectof cognitivescienceis thedescriptionandsimulationof cognitiveprocesses

and structures,especiallyin the areasof memory,problem solving, verbal behavior,

and image identification.

Somecognitive processes,for examplethe productionand the parsingof sentences,

seemto employsophisticatedsymbolmanipulatingoperations,otherprocesses,suchas

imageidentificationor accessto word meaning,seemto rely on fastprocessingof huge

amountsof rathervagueknowledgethat hasbeenlearnedin manydifferent situations.

This learningis performedin a smoothway, enablinggeneralization,contextsensitivity

and noisy inputs. This useof experiencemakesit necessaryto comparesituations,i.

e. to decideif a new situationis equal to or resemblesan old one. This comparison

might beachievedby useof distancemeasureswhich aresensitiveto manyparameters

of the situation. Distancesbetweensymbolicobjectsareratherartificial constructions,

while they are elementaryto elementsof metric spaces.

Another controversyin cognitive science,which is closely relatedto the questionof

symbolic processing,is the question,to what degreethe cognitive systemis modular

([8]). A modular view assumesthat the cognitive apparatusconsistsof independent

modulesbetweenwhich dataareexchanged.This assumptionseemsto be the natural

consequenceof a symbol processingapproach. On the other hand, it seemsdifficult

to explain the high speedof perceptionprocesseswith modular symbol processing

systemsbasedon rather slow biological neurons. There are also empirical data that

seemto contradicta strictly modularapproach.
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To explain theseaspects,modelswith distributedmemoryandparallel processeshave

beenproposedthat can be interpretedas dynamicalsystemson metric spaces.These

models are known under many names,such as connectionism,parallel distributed

processing(pdp), neural networks([10], [12], [1], [7], [9], [13]), and are definedin

manydifferentways. In the following paragraphsomeformal definitionswill be given

that catchthe centralaspectsof thesemodelsto unify terminology(Seealso [3]).

2 Neural Networks

The following very generaldefinition includesmost of the deterministicmodelsused

in literature. Besidethese,therearenon-deterministicor probabilisticmodels.

2.1. Cellular Structure
Let

�
be a set and � a countableset. ������� �

is called a configurationof

valuesof
�

on the cells of � . �
	 ��� 	�
�������� ���
denotesthe spaceof all

configurations.

For everycell ����� let ����������� be a finite, orderedsubset,the neighborhoodof

cell � . The set � 	�
������ �"!#�$�%� �
of all neighborhoodsdefinesa directedgraph

with nodeset � andthe setof edges
&�'�)('*+��!,*-�.���'��� � , the connectiongraph, net

structure or grid of the cellular structure.

For every cell ���/� let 021%� �4365 187 � �
be a local function. Let further

0�	9
�021:!#�$�%� �
be the setof all local functions. Then ;<	
���=( � (>��(?0@� is called

a cellular structure. AB�C�D� � with AC�E�F�?�'� ���8	<0#1'�'���'���'� �G�)� is called the global

function of ; .

If � is finite, ;�	����=( � (?��(>0H� is calleda finite cellular structure.

If
�

is finite, ;D	����=( � (?��(>0I� is calleda cellular automaton.

a b c

Figure 1: ThreeDifferent grid structures. Neighborsare indicatedby an
arrow from the neighborto the cell itself. a) Arbitrary grid, b) Rectangular

grid with VON NEUMANN neighborhood,c) Onedimensionalcircular grid.

Theglobalfunctiondefinesanautonomousdynamicalsystemontheconfigurationspace.

The behaviorof the systemcan be influencedby the structureof the grid and by the

natureof the local functions.Both kinds of restrictionsareusedto constructmodelsof

cognitivebehavior.The following restrictionon the local functionsis usedfrequently:
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2.2. Neural Net
1. A cellular structure ; 	��'� ( � (>� (>0 � with

� � �
and�������	��
��
�
����������� ����������� �! #" �%$ � �	�'&(��)* with " �%$ �,+�- (1)

and monotonic not decreasing functions
� �/. -10 2 is called a (deterministic)

neural net.
� �

is called the output function of cell
�
. " �%$ � is called the weight from

cell
&

to cell
�
.

2. A function of the form3(4 . -65/0 7#8:9�;=<?> 3@4 ��AB�C�ED 4CF 5� �HGJI " � A �%K �ML ; �
� 5N�HGJI " � A �PORQ/S 88 T	U�VPWYX " �
Z W
is called a linear threshold function with weights " I 9Y[%['[%9 " 5 and threshold

Q
.

The dynamic behavior of a neural net on a given grid is determined by the output

functions and the weights. In many cases the same output function is chosen for all

cells. Then the behavior of the system depends only on the weights. They can be

chosen to achieve a desired behavior of the system. This can be done either in one

single step (see for examples [6], [4]) or in a longer adaptation process of small smooth

changes either before the use of the net as a model or even during the use of the system.

This construction of appropriate weights is often called learning.

The following restriction on the structure of the net forces a simple dynamical behavior:

2.3. Feed Forward Net
Let \ ���
] 9^2_9 
 9 �`� be a cellular structure. The set acb � 7 � + ]ed?
_�
�����gf < is

called the set of input cells.

Let a 5ih ]
be the set of cells that can be reached from the cells of a b by passing

through exactly j edges of the connection graph of \ . If acblk�1f
and all a 5 are

disjoint, the grid is called a feed forward grid and a 5 k�mf
are called layers of the

grid. a b is called input layer, a 5 with j �onepqA 7 n +�r d acstk�Ef < is called output

layer and all layers in between are called hidden layers. \ �u��] 9^2_9 
 9 �v� is called

a feed forward net or a feed forward network.

Feed forward neural nets are used to transform an input pattern of values on the input

layer into a pattern of values on the output layer of the grid. A well known example with

three layers is the perceptron developed 1962 by F. ROSENBLATT [14] and extensively

studied by M. MINSKY and S. PAPERT in [11]. Other examples with more layers and

continuous output functions are back-propagation networks. The name is due to the

way in which the weights are computed: First the weights are set to random values;
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Figure 2: A feed forward grid with 5 layers

then, using a sample of given input and target patterns as training material, the pattern

on the output cells produced by the network from the input pattern is compared with the

target output. Using a gradient descend method, the weights are changed in such a way

that for this input pattern the difference between the output of the net and the target is

reduced. To adapt the weights between earlier layers, error values are propagated back

to these layers, and a correction for the weights is computed using these error values.

(For details compare [9].)

The dynamic of a feed forward net is quite simple: Starting with an arbitrary config-

uration � ��� , the values of the input cells in the first iterate �����	� depend only on

their local functions since they have no input (argument). From the second iteration on

the values of the cell in 
�� are constant, since they have only the constant input from

the cells of 
�
 . In this way the values of the subsequent layers become constant in

subsequent iterates. In a net with � layers the iteration sequence reaches the same fixed

point from every configuration within ����� iterations.

3 Example

In the following we shall concentrate on experiments investigating the process of word

recognition. One goal of these experiments is to answer the question of modularity

of the cognitive system,in this casethe question,if there is an independentmodule

functioningasa mental lexicon wherethe wordsknown by a personarestored.

First we shall give a brief descriptionof the experimentalsituation in which dataon

humanword recognitionarecollected.Thenwe shall outline a simulationof suchdata

usinga back-propagationnetwork. Finally a dynamicmodel is proposed.
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3.1 Word Recognition and Priming

Word recognition is an experimentalparadigmthat is used frequently to investigate

cognitive processesin verbal behavior. The basic idea is to measurethe time people

needto respondto thepresentationof awrittenword, thesocalledtarget. Therequested

reactionsareeitherto namethe target (naming experiment), or to decide,if a presented

string of charactersis a word of the native languageof the personor not, by pressing

an appropriatebutton (lexical decision experiment). In both casesthe time elapsing

betweenthe onsetof the presentationof the target and the onsetof the reaction is

measured.Thereare many studiesinvestigatingthe effect of

– frequencyof the target in language

– regularity of pronunciation

– length of the target

and the like.

Priming experimentsinvestigatethe effect of contexton namingand lexical decision.

In this casethepresentationof thetargetis precededby thebrief presentationof another

word, the so called prime. This prime can be relatedto the target in different ways.

It can

– be the sameword typeddifferently (uppervs. lower case)(identity priming).

– be semanticallyrelated(semantic or associative priming)

– precedethe target frequentlyin naturallanguage(syntactic priming)

– be similar as a string of characters(graphemic priming)

If the presentationof a target that is relatedto the precedingprime leadsto a quicker

reaction,then the mental lexicon is probablynot completelymodular.

The results show complex behavior (see [5], [16] for an overview and references).

While somestudiesfound someof the priming effects,othersdid not. Thereseemto

be many factors influencingthe results. At least it seemsto be ratherunlikely that a

mental lexicon exists that is completelymodular.

3.2 A Back-propagation Model

We shall now presenta model of word recognitionthat catchessomeof the features

of a parallel and distributedsystem.

3.2.1. The Model

In 1989 M. SEIDENBERGand J. McCLELLAND proposeda “Distributed, Developmental

Model of Word RecognitionandNaming” [15]. Theyuseda modifiedback-propagation

model and were able to simulate“many aspectsof humanperformanceincluding (a)

differencesbetweenwordsin termsof processingdifficulty, (b) pronunciationof novel
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items,(c) differencesbetweenreadersin termsof word recognitionskill, (d) transition

from beginningto skilled reading,and(e) differencesin performanceon lexical decision

and naming tasks.”[15: page523].

Thenet theyused,consistedof 3 layers: an “orthographic” input layer ��� of 400cells,

a hiddenlayer ��� with 100 to 200cells,andanoutputlayer ��� thatwasdivided in two

parts: a “phonological” output part with 460 cells and an orthographicpart that was

similar to the input layer. The phonologicalpart of the output was usedto simulate

namingdata,theorthographicpartwasusedto simulatelexicaldecisiondata.Thelayers

werefully forward connected,i. e. for �	��

������� and ������� it holds �������������! "� .

orthographic
 input

orthographic 
output

hidden
layer

phonological 
output

S
1

S
0

S 2

Figure 3: Structure of the back-propagation grid used by M. SEIDENBERG and J. McCLELLAND. It
can be seen as one grid from #%$ to #�& or as two grids, one from the orthographic input to
the orthographic output and one from the orthographic input to the phonological output.

Themodelwasbuilt for monosyllabicwordsconsistingof morethan2 letterswhichwere

not foreignwords,abbreviationsor complexwordsthatwereformedfrom theadditionof

a final –s or –ed inflection. Therepresentationof thesewordson the input layerand,as

targets,on the orthographicpart of the output layer wasconstructedby a complicated

transformationof the letter triplets occurring in the word. The representationof the

phonological targets was a transformationof triplets of phonemesoccurring in the

pronunciationof the word. (For detailscompare[15] and[9 vol.2, chap.18])

To simulate the reaction time the mean quadraticerror betweenthe output pattern

computedby the net on the respectivepart of the output layer and the target pattern

was used. The assumptionwas that a convergenceprocesstakesplace, in which an
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erroneouspatternconverges to the correct one. This processshould take more time,

if the error is big.

The model was trained with 2,884 stimulus – target pairs, presentedfrom about 14

timesfor low frequentwordsup to 230 timesfor the mostfrequentwords. With every

presentationthe weightswerechangedfor the orthographicpart of the outputand the

phonologicalpart of the output. Thus the weightsfrom the input to the hiddenlayer

were trained twice, for the orthographicto phonologicalnet and the orthographicto

orthographicnet.

3.2.2. Remarks

Severalremarkscanbe madeon the modeldescribedabove(3.2.1).

1. The modelrealizesa “metric” system,sinceinput andoutputareelementsof an �

dimensionalspace.It canbeseenasacontinuousmappingfrom
��� � � to

����� ��� ��� � � .
This continuity is probablyoneof thereasonsfor theability of themodelto exploit

regularitiesof the training materialandgeneralizethemto new material.

2. The effectivenessof the continuity in generalizationdependson the representation

of the input. On the onehandit hasto representenoughof the crucial information

of the individual input to distinguishit from other inputs,on the otherhandit has

to generalizeover the individual inputs to extract featuresthey have in common.

The representationsusedin the modelarevery sophisticated,hencea gooddealof

its power may be due to the “constructed”representations.

3. As theauthorsmentionthenumberof cells in thehiddenlayerhasastronginfluence

on theperformanceof themodel. It determineshowmuchinformationcanbepassed

throughthis layer, i. e. how detailedor generalizingthe treatmentof a singleinput

can be.

4. Thespecialstructureof thenetwith thehiddenlayerin commonfor theorthographic

to phonologicalnet and the orthographicto orthographicnet, can be a reasonfor

the model’sgeneralizationbehaviorin the simulationof the lexical decisiontask.

The representationof the information on the hidden layer has to take accountof

both the phonologicaland the orthographicpropertiesof a word.

5. The authorsstressthe point that their modelhasno lexicon. But the orthographic

to orthographicnet is a devicethat reproducesa word from a string of letters.Due

to the continuity it is somewhatrobustagainstsmall perturbation.It will produce

the correctoutputevenif only partial informationis givenasinput. Hencewith an

appropriatefunctionaldefinitionof a lexicon, it is just a distributedimplementation

of amentallexicon,includingphoneticinfluencesasdescribedin thelastremark(4).
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6. Theauthorsview their modelaspartof a largermodelincluding layersfor meaning

and context. In the presentimplementationit is not visible how theseadditional

componentsshouldbe integrated.Hencethe simulationof further processessuch

as priming is not possible.

7. Becauseof the feed forward structureof the net, thereis no possibility to explain

the influenceof previousinputs or strongerinfluenceof a longer input. To the

model it makesno differenceif the input is presentedonceor for a longer time.

4 A Dynamic Model of Word Recognition and Priming

The modeloutlined in 3.2.1simulatesreactiontimes by distancesbetweenpatternsof

activitieson partsof a neuralnet andexpectedtarget patterns.It is assumedthat larger

distancesresultin longertimesfor the formationof correctpatternsasinput to thenext

componentof the cognitive system.

In the remainingpart of the paperwe shall outline someideashow a simulationcould

work that usesthe convergenceof a dynamicalsystemon a metric spaceto simulate

word recognitionprocesses.

4.1 Basic Assumptions

First someassumptionsare listed that point out the basic principles of the dynamic

model.

4.1.1. Cognition as Dynamical Process

The first assumptionof the dynamicalmodel is, that cognitiveprocessesaresimulated

by a dynamicalsystemgivenby theglobal functionof a neuralnetwork. Thecognitive

statesarerepresentedby the configurations,the time courseof theprocessis simulated

by the iteration sequence.If the iteration sequenceapproachesa small attractor,for

examplea fixed point, this either correspondsto a stablecognitive state,for example

the meaningof a word or image,or it is a constantor periodic input to other neural

netsstimulating further processes.In both casesthe assumptionis central, that only

configurationsequencesthathavesomestability over (a shortperiodof) time cancause

somethingto happen.

4.1.2. Learning: Detecting Regularities in the Input

Thesecondbasicideais, thattheneuralnetis slowly but constantlychangedby its input

in sucha way that co-occurringeventsareassociated,i. e. the configurationsresulting

from frequentand frequentlyco-occurringeventsin the input of the systemshouldbe

stable.This enablesthenet to “detect” regularitiesin its input (compare[7]). Fromthe

point of view of the dynamicalsystemthis meansthat by changingthe weightsof the
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neuralnet, the attractorsof the global function andtheir basinsof attractionhaveto be

changedin sucha way that frequentinput patternsbecomeattractors.

4.1.3. Constantly Triggering Input

In contrastto 3.2.1 it is assumed,that the grid hasno pre-definedstructure,especially

no feed forward structure,but that the structuredevelopsduring learning. It should

be not very denselyconnectedand it shouldcontainloops. Input is presentedto the

net in such a way that the input patternis addedto the activities of the input cells

for severalapplicationsof the global function; i. e. the systemis no longer an

autonomoussystem,but is triggeredby the externalinput. ����� � � � �����	� �
�%� with

������� �
�
����
 ��� ����� ��
 ��� �
� ��
 � . The input cells areonly a small fraction of all cells of

the net. From this fraction the influenceof the input spreadsout to the other cells.

Thereit canmatchwith the existingpatterns(of the previousattractor)or it can force

themto change,moving the systemto the basinof a differentattractor. This constant

triggeringallows on the onehandto control the durationandstrengthof the input, on

the otherhandinfluencesof previousinputsarepreservedfor a while to interactwith

new influences,as it is necessaryto simulatepriming effects (compare3.2.2.7).

4.1.4. Subnets and Modularity

The distributedrepresentationof the processedinformation as patternon the cells of

the grid allows complicatedinteractions,including modularization.It is possiblethat a

subsetof cells is stronglyinterconnected,but hasonly a few connectionsto othercells.

Sucha subsetor subnetcould be called a module. It is also possiblethat the system

convergesfor awhile relativelyindependentontwo suchsubnetstowardssub-patternsof

differentattractors,andthat lateron conflicts arisebetweenthesetwo sub-patterns.For

exampletheremight be subnetsincorporating“meaning”, and “context”, as proposed

by [15]. In sucha casethe configurationcoming from the (orthographic)input may

converge on one part of the net (say meaning)to one attractorbut on the other part

(context) it may converge to anotherattractor, becausethe surroundinginformation

points toward a different interpretation. This may lead to a contradictionand finally

one of the two attractorswill win.

The idea of shapingattractionbasinsis very powerful. It openspossibilitiesfor the

explanationof manyeffectsin word recognition.On theotherhandit is not yet in such

a concretestatethat any oneof theseexplanationscanbe morethana hypothesis.

4.2 Simulation of Word Recognition Processes

In termsof this model the processesinvolved in naming,lexical decisionandpriming

can be describedin the following way:
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4.2.1. Naming

For the naming task the systemhas to stimulate the pronunciationof the written

word. In a modular approachit is assumedthat this is done by the productionof

a phonologicalcode,which in turn is the basisfor the generationof a motor codethat

controlsarticulation. A comparablesystemis also possiblefor the dynamicalmodel,

as a cascadeof neuralnets,one stimulatingthe next one as soonas it hasreacheda

stablestate(seealso [2]). The dynamicmodel can explain severalother phenomena:

Frequentwordsarenamedfaster,sincetheir attractorsarestrong;regularlypronounced

wordsarenamedfaster,sincethe sequenceof lettersaremorefrequentandhencelead

to faster convergence.

4.2.2. Lexical decision

The lexical decisiontaskrequiresto distinguishbetweencharacterstringsrepresenting

wordsandcharacterstringsthat do not representwords. In generalthe wordsusedfor

this purposeare well known, short, and frequentwords of the native languageof the

subject. The non–wordstringsareconstructedin sucha way that they havethe same

length and that they are pronounceable.From 4.1.2 it should follow that there is no

attractorfor thesestringssince they are new to the system,and there is no meaning

associatedto them. Hencein thoseparts of the grid whoseconfigurationsrepresent

meaningthereshouldbe no convergence.Of coursetherecanbe convergencejust by

chance,but that is equivalentto a wrong answerof a person.

4.2.3. Priming

Primingeffectsoccur,whenthesystemis movedby the influenceof theprime towards

theattractorof thetarget: Theinput of theprimechangestheconfigurationof thenet in

sucha way that, if the following target is relatedto the prime, the configurationwill be

alreadycloserto theattractorof the target, thanit hasbeenbeforetheprime influenced

the net. Hencethe attractoris reachedfasterthanwithout the prime.

4.2.3.1 Identity priming. If the target is the sameword as the prime but written in

lower caseletters,while theprimewaswritten in uppercaseletters,mostof thepatterns

inducedby the two stringswill be the same.Hencethe impactof the prime on the net

will be very similar to that of the target.

4.2.3.2 Semantic priming. If the prime and the target are semanticallyrelated,they

appearmore frequentlytogether(see[18]). Hencethey can lead to the sameattractor

concerning“meaning” and “context”: the influenceof the prime moves the system

closerto an attractorthat is in manyrespectsalsoa possibleattractorfor the target.

4.2.3.3 Syntactic priming is basedon frequentco-occurrenceof words in language.

According to 4.1.2 this should lead to fasterconvergence.
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4.2.3.4 Graphemic priming is basedon the similarity of characterstrings, i. e. the

primeis a stringof charactersin which only very few charactersarechangedcompared

to the target. If the strings are enteredby activating input cells that representshort

sequences(tuples)of characters,mostof thesetupleswill be the samein theprimeand

the target. Hencea weak form of identity priming will take place.

4.2.4. Priming with ambiguous words

Of specialinterestareexperimentswith ambiguoustargets,i. e. letter stringsthathave

severalmeanings.In generala semanticpriming effect is observedonly for theprimary

meaning, i. e. themorefrequentmeaning.If theprimehasa strongimpacttowardsthe

lessfrequentmeaning(secondarymeaning), for exampleif a wholesentenceis usedto

primethatmeaning,the reactionis alsofaster.A closeranalysisof theprocesses([17])

showsthat at first both meaningsareactivatedaccordingto their frequency.While the

primary meaningquickly reachesa high availability, the availability of the secondary

meaninggrowsslower. After about300 ms the secondarymeaningreachesnearly the

sameavailability asthe primary meaning.Afterwardsits availability decreasesagain.

Thesedata could be explainedby a processlike that describedin 4.1.4. First there

is an relatively independentevolution of patternson different parts of the net, one

representingthe primary meaning,one representingthe secondarymeaning. After a

while the developingpatternsgrow so large that they get into a conflict in which the

patternof the primary meaningsuppressesthat of the secondarymeaning.

a

b

Figure 4: Two ambiguousfigures: Left the so called NeckerCube: Either
vertexa or vertexb can be seenas being in front. The figure on the
right can either be seenas two black facesor as a white candlestick.

A similar processcould causethe well known switchingeffects for ambiguousfigures

like thoseshownin figure4: Thetwo meaningsarerepresentedby neighboringattractors

of thedynamicalsystem.Theinfluenceof additionalinformationmovesthesystemfrom

the basinof one attractorto that of the other.
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