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Kawamoto (1993) reports a simulation of word recognition processeswith a recurrent
networkof 216 units. 48 patternsof activity wereusedto train the networkandyield data
which arecomparedwith datafrom word recognitionexperiments.Besidethe presentation
of his interestingdata, Kawamotodescribeshis network as a dynamicalsystem,sharing
propertieswith a Hopfield net suchasnonincreasingenergy andconvergencetowardstable
states.
Thisnotegivescounterexamplesto someof thestatementsmadein thisdescription:Simple
netswith increasingenergy andnot converging to stablestates.It showswhy the notion of
“local energy minima” is not of much usefor networksupdatedin parallel and points out
that thereareimportantdifferencesbetweenthe two typesof networks.A simulationshows
the stronginfluenceof the representationof words Kawamotouses.

In his article ”Nonlinear Dynamicsin the Resolutionof Lexical Ambiguity: A ParallelDis-
tributedProcessingAccount” Alan H. Kawamoto(1993)describesa simulationof word recog-
nition processeswith a recurrentnetworkof 216units.

���
patternsof activity wereusedto train

the networkandyieldeddatawhich arecomparedto datafrom word recognitionexperiments.

Besidethepresentationof his interestingdata,Kawamotodescribeshis networkasa dynamical
system,sharingpropertieswith a Hopfield net. This note addressesthis description. It shows
that therearemanydifferencesbetweenthe type of net usedby Kawamotoanda Hopfield net
and that the two networkscanshowvery differentdynamicalbehavior. It further shows,that
someof the statementsmadeby Kawamotoare not true in the generalform he statesthem
and that someargumentsfrom the theory of Hopfield netscannotbe appliedto the net used
by Kawamotoin the way he does. Furthersomeresultsof simulationsof the net defined by
Kawamotoare reported. Runswith different training materialshow, that the resultsgiven by
Kawamotodependheavily on the representationof the words he uses.

The Kawamoto Net

Kawamoto(1993) definesa network with units �������
	�� where“each unit receivesinput from
the environment(...) aswell as from every otherunit in the network (...).” (Kawamoto,1993
p. 481). “The activity of a unit in the network is representedasa real valuerangingbetween
 ����� and ������� ” (p. 482). The activity of unit � “ ... at time ����� is

���������! #"%$!&('�)*'�+ ,-/. �0�����1"2� ,-43
576 � 5 ���1"8� 5 ���1":9;<�>=?�����1"@9; (1)

where A is a decayconstant,B �DC �FE is the influenceof the input stimuluson unit � and GIHKJLH�M
boundsthe activity to the rangefrom 
 ����� to ������� .” (Kawamoto(1993)p. 482 formulas[3]
and [4]). N � 5 denotesthe (symmetric)connectionstrengthbetweenthe units � and O . The
meaningof the parameterC �FE after N � 5 is neitherdefinednor clear.
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There is no further definition of the function ��������� , so I will assume that it is defined as�	��
���
���������������� � � �"! �����# ����� � � �%$ # ���&�� ')(+*-,).0/ ��1 , (2)

(See also Golden, 1986). If the input is removed 2)3547698 is set to : .

To calculate the strengths of the connections the activities of the units are repeatedly set to
different target patterns and in each such learning step the connections are modified according
to the following rule: “This change in the connection strength from a given unit ; to a unit < ,=�> 3@? , can be expressed in terms ofACB 3�? �EDF�G( 3 # � 3 ��( ? (3)

� 3 �IH ?
B 3�? ( ?KJ (4)

where L is a scalar learning constant, 673 and 6 ? are the target activation levels of units < and ; ,
and <M3 is the net input to unit < .” (Kawamoto, 1993, p. 482).

Kawamoto further defines a Hopfield like “energy” function (Hopfield, 1982)NO� # � �)PKQ � H 3 H ?
B 3�?9RS3�RT? (5)

(formula [5] in Kawamoto, 1993) and states that “each subsequent state of the network has an
equal or lower energy relative to the previous state” (p. 483).

This statement is not true in general as can be seen from the following very simple example.

An Example

Consider a net with only two units and a target pattern U�VXW0VSY . Under the assumption that the
connection strengths at the beginning of the learning process are set to : , one learning step
yields symmetric connection strengths

>[Z]\ ^`_a>b^]\ Zc_ L (Kawamoto, 1993, p. 485). In what
follows this connection strength will be denoted by

>bZ]\ ^d_e>f^g\ Zh_jilk
. Assume further that

the two units have the starting activations m Z
, m ^

and that n _ 2 Z _ 2 ^ _ : . The sequence of
activations and energy values is given in Table 1

For many values of m Z
, m ^

and
k

the sequence of energy values is obviously increasing. For
example for m Z _ m ^ _okp_ :rqsV it is tuVK:-v�w , tdV0:xvFy , tdV0:xvFz , ...

Table 1. Activities and energy of the two unit network

time activity unit 1 activity unit 2 energy

1 m Z m ^ t Z ^ 47m Z m ^{k}| m ^ m Z{k 8 _ tcm Z m ^{k
2 m ^{k m Z{k t Z ^ 49m Z{k m ^{k�k%| m ^~k m Z{k�k 8 _ tcm Z m ^{k w
3 m Z k ^ m ^ k ^ t Z ^l� m Z k ^ m ^ k ^ k%| m ^ k ^ m Z k ^ kl�d_ tcm Z m ^ k y
n m��]�@�0� k � v Z m������K� k � v Z tcm Z m ^ k ^ � v Z

with ��������� �g�7�������������C������� and �X�����E� �9�������C������� .
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The Difference

The net defined by Kawamoto differs from a Hopfield net (Hopfield, 1982) in several ways.
These differences lead to different dynamic behavior:

– in a Hopfield net there are only two possible activity values � and �
– Hopfield uses a threshold function to calculate the new activation value of a unit
– in a Hopfield net only one unit is updated per time step (sequential updating)

To show the effect of the differences I will show how changes of the definitions of Kawamoto
towards the definition of Hopfield change the behavior of the system.

With a Hopfield like threshold function

�������	��

��� � 
 ��� ��������� � � � � �������!  "#�%$'&
(*)+��,#& (6)

for the updating of the units and positive values of - � , -/. and 0 the example would look like
given in Table 2. The sequence of energy values for - �21 -�. 1 0 1 �435� would be 67�*�989: ,6;�
� 8 � , 67�
� 8 � , 67�
� 8 � , ... a nonincreasing, finally constant sequence! The existence of activity
values different from � and � in the Kawamoto net allows the increasing energy sequences.

Table 2. Activities and energy of the two unit network with a threshold function

time activity unit 1 activity unit 2 energy

1 - � -�. 6 � .=< - � -�.>0@?!-�.>- � 0	A 1 6B- � -�.>0
2 1 1 6B0
3 1 1 6B0
n 1 1 6B0

There are also other ways to guarantee nonincreasing energy in the net used by Kawamoto
(Golden, 1986, Hui & Zak, 1992). For this purpose the inner part of formula (1) can be
rewritten as a matrix vector multiplication, i.e. a linear function in a C –dimensional space:�/���	�D

�E�DFHGI��J#K;� � �L�/���M���N,
�O����P (7)

with - <MQ A being a vector containing the activities at time Q and R denoting the unit matrix with� in the main diagonal and � elsewhere; S 1UT S ��V W*X � �Y��Z[Z � V W �\��Z[Z � is the matrix containing the
weights, and ] <^Q A is a vector containing the external input at time Q . _ denotes the application
of the function _HR�`aR=b to the single components of a vector.
Golden (1986) introduces this formula in the formc ���M�d�e�/���M�f�hg � ���O��� (8)

and �/���	�D

�E�!Fi� c �����M� (9)

He shows that the energy is decreasing, if the matrix S is positive semidefinite or if jUklnm\oqpYr �Is o with
p'r �Is denoting the minimum eigenvalue of S . Hui and Zak (1992) give a

related condition for the extreme points of the hypercube to be fixed points.

These assumptions are not mentioned by Kawamoto. In fact, the only way to manipulate the
properties of the eigenvalues of the matrix in his setting is to choose the learning parameter t
appropriately, or to construct the training patterns representing the words appropriately.
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Table 3. Activities of the two unit network with constant energy

time activity unit 1 activity unit 2 energy
1 ����� � ������� 	
�������
�����
2 ��������� ������� � 	
�����������
���
3 ����� � � � ����� � ��� 	
���������������

n ����������� � � � �"!$#�%'&)( ��*+�,�-�.� �'� � �0/1!32 ��4 #5%'&6( 	
��������� � �'� � ���
with 7�/+! 4 � /8/1!32 �'4 #5%'&6( 4 2 �

and 9:/+! 4 � /;!�#5%'&<( 4 2 �
.

Nonincreasing Energy, Local Minima and Stable States

Kawamoto (1993) argues the following way:

The activity in the network then changes in such a way as to consistently move down the
energy gradient until a local minimum in the energy is reached (Hopfield, 1982; Golden,
1986). These states are called stable states because the state of the network generally
does not change once the network reaches one of these states. (p. 483)

Here again the differences between the Hopfield net and the net used by Kawamoto may look
small but they are important for the dynamic of the system. In a Hopfield net a pattern of
activities may have many possible successors in the development of the system due to the fact,
that the next unit for processing is selected at random. All these possible successors differ at
most in the activity of one unit since the activity of only one unit is changed. If we assume a
Hamming distance in the space of activity patterns (i. e. the distance between two patterns is
the number of units in which the activities are different) all successors of an activity pattern lie
in the immediate neighborhood since they have at most distance

�
. If all patterns with distance�

from a pattern � have a higher energy, this pattern � is a local minimum of the energy. In
this case it is a stable state because the next state would have to be identical or have distance�

, which it cannot because the energy cannot increase.

In the case of the Kawamoto net things are quite different. On the one hand a pattern has a
unique successor since there is no random selection of a unit, but all units are updated in parallel.
On the other hand this means that many units can change their activity. This in turn means, that
the Hamming distance to a successor is not bounded by

�
but the system can “jump around”

over large distances. Hence “local minima” on the basis of the Hamming distance (as they are
defined by Hopfield) are rather uninteresting for the description of the dynamics of the system.

To use the “local energy minima” for the Kawamoto net in a sense analog to the use in the
Hopfield net it would be necessary to define a “distance” (i. e. a metric) for the space of activity
patterns that guaranties that the distance between a pattern and its successor is bounded. (Golden,
1986 did not mention “local minima” at all.) If the energy of a system were nonincreasing a
pattern would then be a stable state if all patterns within that distance had higher energy.

To give an example that even with a nonincreasing sequence of energy values there need not
be convergence in the sequence of activity patterns for the net defined by Kawamoto (1993),
we return to the example given above and set � � �"��� �

and � � �"� . (See Table 3)

The energy values are constantly � but the pattern of activity switches between the two patterns= � > �@? and
= � >�� ? in a cycle of length two for infinity and hence the system never converges.

The Hamming distance of the two patterns is maximal (The activity of both units changes).

The difference to the Hopfield net is that Kawamoto uses parallel updating. If only one unit
(chosen by chance) would be updated at a time, the system of the example would either converge
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to the activity pattern ��������� (if unit � were chosen first) or the activity pattern �
	���	�� (if unit
� were chosen first). Both patterns are stable states of the system.

In the discussion of the “energy landscape” Kawamoto uses distances “in Cartesian coordinates”
(Kawamoto 1993, p. 490); I will assume, that this means euclidean norm and the respective
distance.

Note that the euclidean norm 
���
��
������� ���� is small compared to the hamming distance or

to 
���
 � �
������� � ��!�"#� �%$ , since the range of � � is restricted to &�'(���
�*) . The length of the unit

vector is + + ",���*-.-/-/�
� $%0 + + �21 ���435�6�87�-:9�	 and the maximum distance between two vectors is;
����3=<�"��?>@� $ � �6�BA -�C�A .

An upper bound for the maximum distance between two consecutive states of the system can
be given. The growth of a pattern vector � when multiplied with the matrix D is bounded
by the spectral radius E : 
�DF�G
IHJE�
 ��
 . Hence the distance between two consecutive states
of the net is bounded byK LNMPO4Q(RTSUQ V�WTQXK�YUKZLNM[O4Q\R]SUQ^V_K*R`K Q�K�YaK O4QbR]SUQ�K8R`K Q�K

YUKZO4Q�K8RcK SUQ�K*RdKZQXKBYeO^K QXK*RgfhK Q�K8R`K QXK�YdM[O?RifjRlk
VmKZQ�K (10)

The growth of the length of a pattern vector � "on $ can be given as the growth quotient of the
length of two consecutive states. It can be bounded from above in the following way:K Q^M%p�Rek4V_K

KZQ^MqpoV8K Y MPO?RTf�V�KZQ�MrpoV_K
KZQ^MPp#VmK YdM[O?Rsf�V

(11)

This upper bound is of interest only for very small pattern vectors � "tn $ or matrices with small
spectral radius because otherwise the influence of the function uwv�xyv�z is too strong.

Simulations

The system described by Kawamoto (1993) has been implemented with the parameters given in
his article, except for the learning material. This was replaced by 7^{ random patterns of values
� and '|� , which were presented C�C times in random sequence; altogether ��}�{�7 learning trials.
The simulations were made to check whether the properties shown in the counter examples can
also be found in networks of the size used by Kawamoto. Random patterns were used to check
the influence of the representation constructed for the words.

The net was tested with the 7�{ patterns it was trained with and 7�{ different random patterns.
For this purpose the activities of the units were set to >j	�-~��} if the respective activity in the
input pattern was � , and to '�	 -:��} if it was '|� (compare Kawamoto, 1993 p. 485). Then
iterations were performed without any further external input. The iteration was terminated if
either the (euclidean) distance between two consecutive Patterns was less than 	�-~	�� or a total
of }�	 iterations were performed.

The net did not converge within }�	 iterations; neither for any pattern of the training set, nor for
one of the new patterns. The energy increased within all iteration sequences and the distance
between two consecutive patterns in a sequence varied between �4��-~{�7 and ��	 -:}�7 . (Note, that
the length of the input pattern vectors is only + + "t	�-~��} �
-.-/-/�_	�-~��} $t0 + + ��C�-:3B9 and the maximum
distance is ��A�-~C�A .) The spectral radius of the matrix D can be estimated as E���� �4C�-~} . With
the value ���J	�-~A�} this yields an upper bound of �=>@E]�J���*7�-�7�} for the growth quotient.
This upper bound can be reached with very small pattern vectors ( � �m!�"#� �%$ ���4	 � � � ). With the
parameters given by Kawamoto it varied between 	�-~A�A and 7�-:	�	 because most of the activities
after the first iteration are close to � or '|� due to the large spectral radius and the function
u�v�x�v�z ( 7�-:	�	 is the maximum possible value for the first iteration) .
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After ��� iterations, the distance to the input pattern was on average �������	��

��������������� for
the training patterns and ����������
����������! ���� for the new patterns. The distance to the closest
pattern of the training set was on average ��"#�$���%
&�����'���(����� for the patterns that started with
a training pattern and ��"#�(��")
�������������*�� for those patterns, that originated from a new pattern.

If saturation of all units was taken as criterium (i. e. the iteration was terminated, if all activities
in the net were either +,���(��� or -/.0���(��� , compare Kawamoto, 1993, pp. 485 and 486) the
average number of steps needed until the net was saturated was *��1"�"2
�����������*���� for the
training patterns and *��(���3
������4��������� for the new patterns. However, the distance to the input
pattern was on average �����$���%
������'���(�5 #� for the training patterns and �����$��")
����6�����(����� for
the new patterns. The minimum distance between the saturated patterns and the set of training
patterns was on average �����(���7
������'���8"5��� for the patterns that started with a training pattern
and �������� 2
����%�9���1"���� for those saturated patterns, that originated from a new pattern. In
short: nothing was learned.

These results show, that some of the assumptions made by Golden (1986) are not fulfilled by
the matrix generated with the  �� random patterns. Probably the minimum eigenvalue of the
matrix is much too small and hence the spectral radius much too big, compared to the value: �;������� used.

The spectral radius of the matrix can be reduced by reducing the learning parameter. With a
value of <=�>���(������* the system was in general able to distinguish the training patterns from
random patterns. The spectral radius was about ���(��� . For  � of the  �� training patterns the
system converges within ��� iterations. For these cases the average number of iterations until
convergence is ��*��$���2
&���6�?�	���(����� . In  �" of  �� new random patterns the system did not
converge within ��� iterations. For patterns from the training set the average distance between
input patterns and the patterns to which they converged was ���8"5�3
����������8"5��� . For new patterns
the distance after ��� iterations or convergence was �	���(����
����%�9������ �� . For the patterns that
started with a training pattern the distance between the patterns after iteration and the closest
training pattern was again on average ���8"5�2
@�����'���8"5��� ; for those patterns, that originated
from a new pattern it was �����(����
&�����'���(����� .
The maximum distances between two consecutive patterns in the iteration sequences is still ���8"5�
(the maximum growth quotient is ���(��� ), hence compared to the maximum possible distance
between any two patterns ( ������*�� ) the “jumps” of the system are still quite big.

Better results were obtained with more training cycles: For �	��� presentations of each training
pattern and <��'���(��������� the average number of iterations was ���(���%
A���%�� B�8"5��� for the training
patterns. None of the new patterns converged within ��� steps. All inputs from the training set
converged to the correct training pattern. For the new patterns the average distance between the
input pattern and the pattern to which it converged was ��"��1"�")
����������(����� ; the distance to the
closest training pattern was ������ ��%
&�����C���(����� . The largest distance between two consecutive
iterations was ����*�� , the maximum growth quotient ���(���
If we assume, that the net of Kawamoto really converged (as definition of the “number of
iterations through the network” Kawamoto (1993, p. 486) mentions only saturation) there have
to be reasons for this difference. One possible reason is the strong structure of the representation
patterns of the words. The learning algorithm (equation (3)) changes the connection strength
only as long as the incoming activation is different from the target activation. If the training
patterns share many identical subpatterns, like the representations of ambiguous words used by
Kawamoto, the sum of all changes made during learning is reduced. This leads to a smaller
spectral radius of the matrix. This effect is further strengthened, if patterns that share identical
subpatterns, like those representing ambiguous words, are presented more often than other
patterns.
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In this light the fact, that thenetconvergesfor (most)of thepatternsconstructedby Kawamoto
but doesnot converge for any of the randompatternsusedin the presentsimulationsraises
the questionin how far the resultspresentedby Kawamotoaredueto his specific(hand-made)
representationsand how much they are due to the learningof the net.

Discussion

The counterexamplesgiven abovedemonstrate,that two propertiesassumedby Kawamoto
(1993) for his systemdo not hold in the general form he statesthem: convergence and
decreasingenergy. For the convergencethis doesnot changemuchaslong as the simulations
he ran converged toward stablestatesand the validity of the simulationis restrictedto the ���
exampleshe simulated.For the decreasingenergy the situationis different. All the arguments
usingthe“energy landscape”arebasedon this property.Theyneeda newproof that theenergy
of the systemis really nonincreasingunderiteration (if that is in fact the case)and they need
the definition of a distancein the spaceof patternsthat makesthe notion of local minima
meaningfulto the system,i. e. that guarantiesthat the movementof the systemin the space
of patternsis substantiallybounded.Simulationswith ��� randompatternsas training material
show, that the problemsgiven in the counterexampleare not restrictedto thesesmall nets.
The iteration sequencesdid not converge, and, if the saturationof the activities was takenas
criterium to terminateiteration, the systemshowedno learning at all. Even if the learning
parameterwasreducedin sucha way, that the systemconverged for the training patterns,the
motion in the spaceof patternswasnot substantiallybounded.Altogetherthereseemsto be a
very stronginfluenceof the special(hand-made)representationKawamoto(1993)constructed
for the words. The questioncanbe raised,how far the resultsaredue to theserepresentations
and how far they are due to the learningof the net.
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